Power: investment need to 2050

Investment needs

2050 targets
Increase annual electricity production 4x to 90-130,000 TWh.

Investment needs
- **Zero-carbon generation**: increase installed wind capacity from 850 GW to 13,000-15,000 GW and solar capacity from 970 GW to ~30,000 GW by 2050.
- **Transmission and distribution network**: investments to expand and upgrade network needed ~5 years ahead of electricity demand.
- **Storage and flexibility**: battery storage to increase from <1 TWh today to 11 TWh by 2050; seasonal variation requires 1,000 GW of hydrogen turbine capacity and limited role for natural gas turbines with carbon capture and storage (CCS).

Investment milestones
$750bn today → $2 trillion by 2030

Where?
Investments this decade will be dominated by high-income countries and China (~$1.3bn per year). Middle and low income countries need to invest ~$700bn a year by 2030 and this requirement will increase over time.

Gross or net?
Estimates are presented as gross investment, though in reality this would be partially offset by declining investments in fossil fuel production and power plants. In middle- and low-income countries, the majority of investment would be required anyway to grow their electricity systems.

Outlook to 2030

- Wind and solar electricity production are now cost-competitive against new and existing fossil for bulk electricity provision in countries representing 90% and 66% respectively, of global electricity generation.
- Higher fossil fuel prices have created incentives to accelerate renewables build out to create energy security and reduce future consumer costs.
- However, a temporary increase in the cost of some inputs and high interest rates have increased the nominal cost of capital – a critical determinant of the relative cost of renewable versus fossil fuel investments. This has particular implications for the significant scale up in low-carbon power required in middle and low income countries, where the cost of capital is typically higher.

2030 target
- 5-7x increase in annual wind and solar installations
- $2 trillion investment
- x3 scale up

1 The ETC’s investment estimates differ in approach by sector. Gross investment refers to the total investment required under a 1.5 degree net zero pathway, regardless of how much investment would have occurred anyway. Net investment is the incremental investment required compared to a BAU scenario. Note: All figures are in US dollars. Other zero carbon includes hydropower, nuclear and bioenergy.
Power: how to mobilise finance

Required real economy policies

<table>
<thead>
<tr>
<th>Challenges</th>
<th>Real economy policies needed</th>
<th>Priority policy</th>
</tr>
</thead>
</table>
| **Create a clear strategic vision** | • National power system decarbonisation strategies lacking in ambition or clarity.
• Continued investment in new fossil fuels sends mixed signals to investors. | • National **quantitative targets** for zero-carbon electricity capacity in 2030.
• Plans to phase out coal power generation (e.g., by 2030 and 2035) and unabated natural gas.
• Integrated vision for power generation buildout and network design. |
| **Address the “green premium” challenge** | • Subsidies and Power Purchase Agreement (PPAs) for fossil fuels reduces relative competitiveness of renewables.
• Uncertain pace of electrification across sectors. | • **Carbon pricing**
• Contracts-for-difference with additional green premiums where low-carbon technologies (e.g., floating wind) are still not competitive and in certain countries.
• Electrification incentives and subsidies (e.g., for heat pumps, electric vehicles (EVs)).
• Remove remaining fossil fuel subsidies. |
| **Reduce downside risks** | • Uncertain and volatile future prices which increase the cost of capital.
• Influence of cost of capital on levied costs. | • Appropriate power market design, including **long-term contracts** (e.g., 15 years) which guarantee offtake prices.
• Annual auctions to competitively procure new renewable capacity. |
| **Remove supply bottlenecks** | • Lengthy and complicated planning and permitting processes.
• “Not in my backyard” (NIMBY) and local opposition.
• Insufficient / slow grid expansion due to uncertainty of demand and short-term regulatory approaches.
• Potential supply chain bottlenecks for key materials. | • **Streamlined planning, permitting** and acquisition processes (e.g., digitalisation, “one-stop shops”).
• Regulatory frameworks to enable anticipatory investment in power networks.
• Sufficient investments in transmission and distribution (T&D) networks ahead of demand.
• Clear plans for supply chain expansion and workforce.
• Wider reforms to planning and permitting, including zoning. |

What obstacles cannot be fully addressed by real economy policies?

| Minimal additional action required | In high-income countries and China | • With the policies described above, the vast majority of investment needed in higher income countries and China can be mobilised by the private sector. |
| Significant additional action required | In middle- and low-income countries | • Higher cost of capital is a significant barrier to investment, given the high upfront capital requirements of low-carbon power investments. |

Additional actions required

| Financial institutions | • Development of managed phase out plans for fossil fuel assets to ensure an orderly and just transition:
• Set out clear “red lines” defining what fossil fuel investments will not be supported.
• Develop consensus on credible financing mechanisms for the early phase out of coal plants.
• Develop strategies for significantly scaling up finance for low-carbon power generation. |

See next page
Power: additional actions to mobilise finance in middle- and low-income countries

Additional real economy policies required

<table>
<thead>
<tr>
<th>Challenges</th>
<th>Real economy policies needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Many countries do not yet have a fully liberalised electricity market and have less advanced system operator capabilities.</td>
<td>Massive scale up in T&D investments and grid access.</td>
</tr>
<tr>
<td>Off-taker risk due a lack of creditworthiness of the utilities.</td>
<td>Progressive evolution towards liberalised markets, combined with long-term contracts.</td>
</tr>
<tr>
<td>Lack of grid and network capacity.</td>
<td>While politically sensitive, reforms to improve creditworthiness of utilities (e.g., improve cost-recovery of end-user tariffs, transparency in flow of funds to electricity generators).</td>
</tr>
<tr>
<td>Lack of economic dispatch in wholesale power markets.</td>
<td>Harmonising frameworks between regions to ensure larger balancing area and power dispatch across countries and regions.</td>
</tr>
</tbody>
</table>

Additional financing challenges

High cost of capital has significant implications given the capital-intensive nature of the investments required. It reflects:

- Project-specific risks, due to weaker policy or regulatory environment for renewables in some countries.
- Sector-specific risks, including off-taker risk.
- Geography-specific risks - actual or perceived - for example, due to macroeconomic risks, the small size of some economies, underdeveloped financial systems.

Implications:

- IEA estimates that nominal financing costs are up to 7 times higher than in the US and Europe.
- At higher levels of cost of capital, financing costs account for an increasingly high share of the levelised costs of renewable energy investments compared to fossil fuel investments.
- Middle- and low-income countries do not have access to the low cost capital needed to finance a rapid scale up in clean power.

Weighted average cost of capital (WACC), $/kWh

Additional actions required

Mobilising domestic savings and private finance

- Improved tax collection and reduced fossil fuel subsidies to increase fiscal resources.
- Growth of local currency capital markets.

Multilateral development banks

- Expand financial capacity, for example, through treatment of "callable capital" in capital adequacy assessments or new capital subscriptions.
- Create the conditions for profitable investments and private finance through:
 - Policies: Help countries develop energy transition strategies and policies.
 - Pipeline: Proactively develop bankable projects.
 - Private sector: Work with the private sector to catalyse private finance, including in the form of blended finance (e.g., via guarantees).

Financial institutions

- Understand the scale and nature of the energy transition opportunity in different groups of lower income economies, for example, through teams on the ground in key markets.
- Actively develop project pipelines in specific areas of technology or sector focus.
- Identify where financial institutions should build relationships with multilateral development banks (MDBs) to help design and implement blended finance approaches.

Note: Middle and low income countries are not homogenous, but to different degrees, tend to face additional challenges and require additional actions.